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COMMENT 

Deterministic model for Eden trees 
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Saha Institute of Nuclear Physics, 92 Acharya Prafulla Chandra Road, Calcutta 700 009, 
India 

Received 17 February 1986 

Abstract. We propose and study a deterministic fractal model on the square lattice for the 
Eden trees, recently proposed by Dhar and Ramaswamy. We find the fractal and spectral 
dimensions of this fractal structure which are equal to 2 and 4 In 2/ln 6 respectively. 

Among different cluster growth processes, the Eden model (Eden 1961) is the simplest. 
In this process particles are added to the cluster one after another by being placed 
randomly on the perimeter of the growing aggregate, resulting in compact clusters. 

Recently Dhar and Ramaswamy (1985) have introduced and studied Eden trees. 
Growth of these clusters is similar to that of the Eden processes except for the restriction 
that those perimeter sites which have more than one particle in the neighbouring 
positions are excluded. The most interesting fact is that these clusters have loopless 
structures which means that any two sites can be connected by one and only one path. 
Though the HausdorfT or fractal dimensions D of these clusters are equal to their 
embedding Euclidean space dimensions ( d ) ,  these clusters are associated with non- 
trivial spectral dimensions (dJ .  Using a generalised node counting theorem and by 
simulating random walks on these clusters it has been shown that d, = 1.22 for d = 2 
(Dhar and Ramaswamy 1985). Very recently Havlin et al (1985) have calculated the 
intrinsic dimensions ( di) of different treelike structures. 

Here we propose and study a deterministic model for Eden trees on the square 
lattice. The cluster grows in this case by successive stages. At the zeroth stage the 
cluster consists of one particle, i.e. the seed. To grow the cluster from the sth stage 
to the (s + 1)th stage we first find out all the perimeter sites of this sth stage cluster 
and then out of these positions we exclude those sites which have more than one 
particle in the neighbouring positions. Particles are then placed at all these allowed 
perimeter sites. In figure 1, the first column shows this cluster at different stages of 
growth. These clusters are self-similar in different stages of growth, e.g. s =  
1,3,7, 15, . . . , etc. We specify these self-similar clusters by the order of cluster growth 
n ( n  = 1,2,3, .  . . , for s = 1,3,7, 15,. . . , etc). This cluster is finitely ramified in the 
sense that, to isolate any number of sites connected to a particular site, one would 
have to cut a finite number of bonds. 

We measure the size of these clusters by the maximum of the Euclidean distances 
between any pair of points on the clusters and denote it by 1. Sizes of clusters at 
different orders of growth follow the recursion relation 

I ,  = 21n-1 + 2. (1) 

N, =4N,- ,+l .  (2) 

The number of particles at the nth order of the cluster (N,) is given by the relation 
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Figure 1. Figure of deterministic Eden trees for different orders of growth (subscripts of 
I denote the order). The first column shows the cluster, the second column shows the 
backbone and the third column shows the skeleton. 

The fractal dimension of these clusters is 
D = lim In( Nn/ Nn-l)/ ln(ln/ln-lJ = 2. 

n-rm 

Therefore the fractal dimension of the cluster is equal to the embedding Euclidean 
space dimension. 

The backbone (containing sites connecting the seed to the perimeter) at different 
orders of cluster growth is shown in the second column of figure 1. We find a relation 
for the number of particles Nfl on the backbone of order n to be 

This relation shows that the fractal dimension DB of the backbone is equal to 1. 
The chemical distance between two points on the cluster is the shortest path of 

occupied sites linking these two points (Havlin et a1 1984). As our cluster is loopless, 

Nft=2Nft- ,  +21n - 1. (3) 
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any two points on it are connected by the chemical path only. The chemical distance 
of any site from the seed site is equal to the s value of that site. The intrinsic dimension 
( d i )  is defined by the relation N,  - s$, where N,  is the number of those sites whose 
chemical distances from the seed site are less than or equal to s, units. As s, = 1,,/2, 
the intrinsic dimension is equal to the fractal dimension of the cluster and di is equal 
to 2 for our model. 

The skeleton of this cluster consists of the set of sites lying on the chemical paths 
connecting the seed to those sites which are at a chemical distance equal to s from 
the seed (Havlin et a1 1984). Skeletons of our clusters at different orders of growth 
are shown in the third column of figure 1. The number of particles N i  on the nth 
order skeleton is given by the following recursion relation: 

N :  = 3 N",, + 1,. (4) 
Using this relation we find the fractal dimension of the skeleton to be Ds = In 3/ln 2. 

On the skeleton for chemical distance s of this cluster the number of sites within 
chemical distance s'  (where SI<<  s)  is given by N i  - srd:, where ds is the intrinsic 
dimension of the skeleton (Havlin et a1 1985). From the figure showing the skeletons 
we see that if the cluster is grown up to the stage s then up to the chemical distance 
s / 2  the cluster is linear. This means the intrinsic dimension ds  of the skeleton is 1. 

Now we find the spectral dimension ( d , )  of these clusters. If the system is made 
of equal mass points connected by springs of equal force constants, then the low energy 
density of states p ( w )  for frequency w depends on spectral dimension as 

To find out d , ,  we follow the decimation procedure of Rammal and Toulouse (1983). 
Using their notation we write down equations for A ( = w 2 / w i ,  where wo is the 
microscopic frequency) for the transformation (with scale factor b = 2, as shown in 
figure 2 )  as follows: 

p ( w )  - wds-*. (5) 

(4 - A ) X s  =. XI + ~2 + ~3 + x4 

( 2  - A ) XI = XI + X s  

(2 - A ) x Z  = X ,  + Xs  

(2 - A ) x ~  = X ,  + X s  
( 2  - A)x4 = x4+ x, 
(4 - A')Xs XI+ X ,  + X3 + X , .  

I 

--- 
x2 

--- 

i I 

Figure 2. Decimation of the deterministic Eden tree to its next self-similar form with scale 
factor b = 2. 
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These equations give 

A ’ =  A(6- A ) .  (7 )  

Using this relation we obtain the spectral dimension of the cluster d,  = 4 In 2/ln 6 .  
At this stage we would like to recall the paper of Dhar (1977) where the idea of 

spectral dimension was first introduced. In this paper Dhar defined the truncated 
four-simplex lattice. Our cluster has much in common with this lattice, with the 
difference that to obtain the lattice from our cluster we have to delete some sites and 
add some bonds from our cluster. However we see that in our case, this difference in 
the number of sites and bonds does not affect the fractal and spectral dimensionalities. 

I am grateful to Dr B K Chakrabarti for many useful comments and suggestions. I 
sincerely thank Dr Deepak Dhar for critical comments on the manuscript and for some 
useful suggestions. 
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